职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

总题量:185 选择本页全部试题
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2020

    正项等比数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),且\(a _{1} =1\),\(S _{2} +4S _{4} =S _{6}\).
    \((1)\)求\(\{a _{n} \}\)的通项公式;
    \((2)\)求数列\(\{a _{n} +n\}\)的前\(n\)项和\(T _{n}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),且\(2S_{n}=n^{2}+n (n∈N ^{*} )\),数列\(\{b _{n} \}\)为等比数列,且\(b _{2} =a _{4}\),\(b _{1} +b _{3} =S _{4}\).
    \((1)\)求\(\{a _{n} \}\)和\(\{b _{n} \}\)的通项公式;
    \((2)\)若数列\(\{b _{n} \}\)为递增数列,设\(c_{n}=(-1)^{n}a_{n}\cdot b_{n}\),求数列\(\{c _{n} \}\)的前\(n\)项和\(T _{n}\).
  • 题型:解答题 题类:模拟题 难易度:难

    年份:2020

    若存在常数\(m∈R\),使对任意的\(n∈N ^{*}\),都有\(a _{n+1} \geqslant ma _{n}\),则称数列\(\{a _{n} \}\)为\(Z(m)\)数列.
    \((1)\)已知\(\{a _{n} \}\)是公差为\(2\)的等差数列,其前\(n\)项和为\(S _{n} .\)若\(S _{n}\)是\(Z(1)\)数列,求\(a _{1}\)的取值范围;
    \((2)\)已知数列\(\{b _{n} \}\)的各项均为正数,记数列\(\{b _{n} \}\)的前\(n\)项和为\(R _{n}\),数列\(\{b _{n} ^{2} \}\)的前\(n\)项和为\(T _{n}\),且\(3T _{n} =R _{n} ^{2} +4R _{n}\),\(n∈N ^{*}\).
    ①求证:数列\(\{b _{n} \}\)是等比数列;
    ②设\(c _{n} =b _{n} + \dfrac {λn-1}{b_{n}}(λ∈R)\),试证明:存在常数\(m∈R\),对于任意的\(λ∈[2 , 3]\),数列\(\{c _{n} \}\)都是\(Z(m)\)数列,并求出\(m\)的最大值.
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    等差数列\(\{a _{n} \}\)和等比数列\(\{b _{n} \}\)满足\(a _{1} =1\),\(a _{1} b _{1} +a _{2} b _{2} +…+a _{n} b _{n} =(n-1)\boldsymbol{⋅}2 ^{n+1} +2\).
    \((\)Ⅰ\()\)求数列\(\{a _{n} \}\),\(\{b _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)若数列\(\{c _{n} \}\)满足:\(b _{n} c _{n} =a _{n} +c _{n}\),求证:\(c _{1} +c _{2} +…+c _{n} < 3\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知正项等差数列\(\{a _{n} \}\)与等比数列\(\{b _{n} \}\)满足\(a _{1} =1\),\(b _{2} =4\),且\(a _{2}\)既是\(a _{1} +b _{1}\)和\(b _{3} -a _{3}\)的等差中项,又是其等比中项.
    \((\)Ⅰ\()\)求数列\(\{a _{n} \}\)和\(\{b _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)记\(c _{n} = \begin{cases} { \dfrac {1}{a_{n}a_{n+2}},n=2k+1} \\ {a_{n}\cdot b_{n},n=2k}\end{cases}\),其中\(k∈N*\),求数列\(\{c _{n} \}\)的前\(2n\)项和\(S _{2n}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} +1\}\)的前\(n\)项和\(S _{n}\)满足\(S _{n} =3a _{n}\),\(n∈N ^{*}\).
    \((1)\)求证数列\(\{a _{n} +1\}\)为等比数列,并求\(a _{n}\)关于\(n\)的表达式;
    \((2)\)若\(b_{n}=\log _{ \frac {3}{2}}(a_{n}+1)\),求数列\(\{(a _{n} +1)b _{n} \}\)的前\(n\)项和\(T _{n}\).
  • 题型:解答题 题类:期末考试 难易度:较难

    年份:2020

    设数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\),已知\({{a}_{1}}=1\),\({{S}_{n+1}}-2{{S}_{n}}=1\),\(n\in {{N}^{*}}\).

    \((1)\)证明:\(\left\{ {{S}_{n}}+1 \right\}\)为等比数列,求出\(\left\{ {{a}_{n}} \right\}\)的通项公式\(;\)

    \((2)\)若\({{b}_{n}}=\dfrac{n}{{{a}_{n}}}\),求\(\left\{ {{b}_{n}} \right\}\)的前\(n\)项和\({{T}_{n}}\),并判断是否存在正整数\(n\)使得\({{T}_{n}}\cdot {{2}^{n-1}}=n+50\)成立\(?\)若存在求出所有\(n\)值\(;\)若不存在说明理由.

     

  • 题型:解答题 题类:期中考试 难易度:中档

    年份:2020

    已知数列\(\left\{ {{a}_{n}} \right\}\)为等比数列,且\({{a}_{n+1}}-{{a}_{n}}=-{{\left( \dfrac{1}{2} \right)}^{n+1}}\).

    \((1)\)求公比\(q\)和\({{a}_{3}}\)的值;

    \((2)\)若\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\),求证:\({{a}_{1}},-{{S}_{n}}+1,{{a}_{2n-1}}\)成等比数列.

     

  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2020

    已知数列\(\{a _{n} \}\)的前\(n\)项和\(S _{n} =n ^{2} +pn\).
    \((1)\)求数列\(\{a _{n} \}\)的通项公式;
    \((2)\)已知\(a _{4}\),\(a _{7}\),\(a _{12}\)成等比数列,求\(p\)值;
    \((3)\)在\((2)\)下,若\(b _{n} =1+ \dfrac {2}{a_{n}\cdot a_{n+1}}\),求数列\(\{b _{n} \}\)的前\(n\)项和\(T _{n}\).
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2020

    已知\(\{a _{n} \}\)为等差数列,前\(n\)项和为\(S_{n}(n∈N^{*})\),\(\{b _{n} \}\)是首项为\(2\)的等比数列,且公比大于\(0\),\(b _{2} +b _{3} =12.b _{3} =a _{3} +a _{5}\),\(b _{6} =S _{11} -2\).
    \((\)Ⅰ\()\)求\(\{a _{n} \}\)和\(\{b _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)设数列\(\{c _{n} \}\)满足\(c_{n}= \begin{cases} a_{n},n∈N^{*}\text{且}n\neq 2^{k} \\ lo g_{ \frac {1}{3} }^{ a_{n} }\cdot lo g_{ 2 }^{ b_{n} },n=2^{k},\end{cases}\),其中\(k∈N ^{*}\),
    \((i)\)求数列\(\{c_{2^{n}}\}\)的通项公式;
    \((ii)\)求\( \sum\limits_{i=1}^{2^{n}}c_{i}\).