职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
  • 题型:解答题 题类:模拟题 难易度:较易

    已知\(\{a _{n} \}\)为等差数列,前\(n\)项和为\(S_{n}(n∈N^{*})\),\(\{b _{n} \}\)是首项为\(2\)的等比数列,且公比大于\(0\),\(b _{2} +b _{3} =12.b _{3} =a _{3} +a _{5}\),\(b _{6} =S _{11} -2\).
    \((\)Ⅰ\()\)求\(\{a _{n} \}\)和\(\{b _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)设数列\(\{c _{n} \}\)满足\(c_{n}= \begin{cases} a_{n},n∈N^{*}\text{且}n\neq 2^{k} \\ lo g_{ \frac {1}{3} }^{ a_{n} }\cdot lo g_{ 2 }^{ b_{n} },n=2^{k},\end{cases}\),其中\(k∈N ^{*}\),
    \((i)\)求数列\(\{c_{2^{n}}\}\)的通项公式;
    \((ii)\)求\( \sum\limits_{i=1}^{2^{n}}c_{i}\).
  • 相关试卷