职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷

选择知识点

  • 题型:选择题 题类:月考试卷 难易度:中档

    年份:2020

    已知\(\{a _{n} \}\)为等差数列,且\(\ln a _{2} =2a _{1} +a _{3}\),则\((\:\:\:\:)\)
    A.\(|a _{1} | < |a _{2} |\)且\(|a _{3} | < |a _{4} |\) B.\(|a _{1} | < |a _{2} |\)且\(|a _{3} | > |a _{4} |\) C.\(|a _{1} | > |a _{2} |\)且\(|a _{3} | < |a _{4} |\) D.\(|a _{1} | > |a _{2} |\)且\(|a _{3} | > |a _{4} |\)
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)的首项为\(0\),\(2a _{n} a _{n+1} +a _{n} +3a _{n+1} +2=0\).
    \((1)\)证明数列\(\{ \dfrac {1}{a_{n}+1}\}\)是等差数列,并求出数列\(\{a _{n} \}\)的通项公式;
    \((2)\)已知数列\(\{b _{n} \}\)的前\(n\)项和为\(S _{n}\),且数列\(\{b _{n} \}\)满足\(b _{n} = \dfrac {2^{n}}{a_{n}+1}\),若不等式\((-1) ^{n} λ < S _{n} +3×2 ^{n+1}\)对一切\(n∈N*\)恒成立,求\(λ\)的取值范围.
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    数列\(\{a _{n} \}\)满足\(a_{1}=1,a_{2}=3\text{且} \dfrac {a_{n+2}}{a_{n+2}-a_{n+1}}= \dfrac {2a_{n+1}-a_{n}}{a_{n+1}-a_{n}}(n∈N^{*})\).
    \((1)\)设\(b_{n}= \dfrac {a_{n}}{a_{n+1}-a_{n}}\),证明:数列\(\{b _{n} \}\)是等差数列;
    \((2)\)设\(c_{n}= \dfrac {(a_{n}+1)^{2}}{a_{n}a_{n+1}}\),求数列\(\{c _{n} \}\)的前\(n\)项和为\(S _{n}\).
  • 题型:填空题 题类:月考试卷 难易度:中档

    年份:2020

    首项为正数,公差不为\(0\)的等差数列\(\{a _{n} \}\),其前\(n\)项和为\(S _{n} .\)现有下列\(4\)个命题:
    ①若\(S _{10} =0\),则\(S _{2} +S _{8} =0\);
    ②若\(S _{4} =S _{12}\),则使\(S _{n} > 0\)的最大的\(n\)为\(15\);
    ③若\(S _{15} > 0\),\(S _{16} < 0\),则\(\{S _{n} \}\)中\(S _{8}\)最大;
    ④若\(S _{7} < S _{8}\),则\(S _{8} < S _{9}\).
    其中正确的命题的序号是______.
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    在数列\(\{a _{n} \}\)中,\(a _{1} = \dfrac {1}{2},a_{n+1}-a_{n}+3a_{n+1}a_{n} =0\).
    \((1)\)证明:数列\(\{ \dfrac {1}{a_{n}}\}\)是等差数列;
    \((2)\)若\(b _{n} = \dfrac {a_{n}}{3n+2}\),求数列\(\{b _{n} \}\)的前\(n\)项和\(S _{n}\).
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)、\(\{b _{n} \}\)满足:\(a _{1} = \dfrac {1}{4}\),\(a _{n} +b _{n} =1\),\(b _{n+1} = \dfrac {b_{n}}{(1-a_{n})(1+a_{n})}\).
    \((\)Ⅰ\()\)求\(b _{1}\),\(b _{2}\),\(b _{3}\),\(b _{4}\);
    \((\)Ⅱ\()\)设\(C _{n} = \dfrac {1}{b_{n}-1}\),求证数列\(\{C _{n} \}\)是等差数列,并求\(b _{n}\)的通项公式;
    \((\)Ⅲ\()\)设\(S _{n} =a _{1} a _{2} +a _{2} a _{3} +a _{3} a _{4} +…+a _{n} a _{n+1}\),不等式\(4aS _{n} < b _{n}\)恒成立时,求实数\(a\)的取值范围.
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)中,\(a _{1} =1\),\(a_{n}=2a_{n+1}- \dfrac {1}{2^{n}}(n∈N^{*})\).
    \((1)\)求证:数列\(\{2 ^{n} \boldsymbol{⋅}a _{n} \}\)是等差数列,并求数列\(\{a _{n} \}\)的通项公式;
    \((2)\)设\(b_{n}= \dfrac {a_{n}}{n+1}\),令\(\{b _{n} \}\)的前\(n\)项和为\(S _{n}\),求证:\(S _{n} < 1\).
  • 题型:选择题 题类:月考试卷 难易度:中档

    年份:2020

    设等差数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),若\(S_{13}= \dfrac {13π}{4}\),则\(\cos ^{2}a_{5}+\cos ^{2}a_{7}+\cos ^{2}a_{9} = (\:\:\:\:)\)
    A.\(1\) B.\( \dfrac {3}{2}\) C.\( \dfrac {5}{2}\) D.\(2\)
  • 题型:选择题 题类:月考试卷 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)满足\(∀ n∈N^{*}, \dfrac {a_{1}+3a_{2}+…+3^{n-1}a_{n}}{n}=3^{n} .\)则\(a _{n}\)的前\(n\)项和\(s _{n} = (\:\:\:\:)\)
    A.\( \dfrac {3^{n+1}-3}{2}\) B.\( \dfrac {3^{n}-1}{2}\) C.\(n ^{2} +2n\) D.\(n ^{2} +4n\)
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    设数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),\(a _{1} =-3\),\(a _{2} =-1.\)若数列\(\{ \dfrac {S_{n}}{n}\}\)为等差数列.
    \((1)\)求数列\(\{a _{n} \}\)的通项公式\(a _{n}\);
    \((2)\)设数列\(\{ \dfrac {1}{a_{n}\cdot a_{n-1}}\}\)的前\(n\)项和为\(T _{n}\),若对\(∀n∈N ^{*}\)都有\(T _{n} > m\)成立,求实数\(m\)的取值范围.