已知数列\(\{a _{n} \}\)的首项为\(0\),\(2a _{n} a _{n+1} +a _{n} +3a _{n+1} +2=0\).
\((1)\)证明数列\(\{ \dfrac {1}{a_{n}+1}\}\)是等差数列,并求出数列\(\{a _{n} \}\)的通项公式;
\((2)\)已知数列\(\{b _{n} \}\)的前\(n\)项和为\(S _{n}\),且数列\(\{b _{n} \}\)满足\(b _{n} = \dfrac {2^{n}}{a_{n}+1}\),若不等式\((-1) ^{n} λ < S _{n} +3×2 ^{n+1}\)对一切\(n∈N*\)恒成立,求\(λ\)的取值范围.