已知数列\(\{a _{n} \}\)中,\(a _{1} =1\),\(a_{n}=2a_{n+1}- \dfrac {1}{2^{n}}(n∈N^{*})\).
\((1)\)求证:数列\(\{2 ^{n} \boldsymbol{⋅}a _{n} \}\)是等差数列,并求数列\(\{a _{n} \}\)的通项公式;
\((2)\)设\(b_{n}= \dfrac {a_{n}}{n+1}\),令\(\{b _{n} \}\)的前\(n\)项和为\(S _{n}\),求证:\(S _{n} < 1\).