题型:解答题 题类:期中考试 难易度:中档
新年份:2020
题型:解答题 题类:期中考试 难易度:中档
新年份:2020
已知\(\left\{ {{a}_{n}} \right\}\)是各项为正数的等差数列,公差为\(d\),对任意的\(n\in {{\mathbf{N}}^{*}}\),\({{b}_{n}}\)是\({{a}_{n}}\)和\({{a}_{n+1}}\)的等比中项.
\((1)\)设\({{c}_{n}}=b_{n+1}^{2}-b_{n}^{2}\),\(n\in {{\mathbf{N}}^{*}}\),求证:\(\left\{ {{c}_{n}} \right\}\)是等差数列;
\((2)\)若\({{a}_{1}}=\dfrac{1}{2}\),\(d=1\),\({{d}_{n}}=\dfrac{1}{c_{n}^{2}-1}\left( n\in {{\mathbf{N}}^{*}} \right)\),
\((\)Ⅰ\()\)求数列\(\left\{ {{\left( -1 \right)}^{n}}b_{n}^{2} \right\}\)的前\(2n\)项和\({{S}_{2n}}\);
\((\)Ⅱ\()\)求数列\(\left\{ {{d}_{n}} \right\}\)的前\(n\)项和\({{T}_{n}}\).
题型:解答题 题类:期中考试 难易度:中档
新年份:2020
题型:解答题 题类:期中考试 难易度:中档
新年份:2020