设各项均为正数的数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),已知数列\(\{a _{n} \}\)满足\(na _{n+1} -(n+1)a _{n} =1(n∈N*)\),且\(a _{1} =1\).
\((1)\)求数列\(\{a _{n} \}\)的通项公式;
\((2)\)求\(λ\)的值使数列\(\{ \sqrt {4S_{n}+4n+λ} \}\)为等差数列;
\((3)\)数列\(\{b _{n} \}\)满足\(b _{n} = \dfrac {1}{4S_{n}-1}\),\(T _{n}\)为数列\(\{b _{n} \}\)的前\(n\)项和,是否存在正整数\(m\),\(k(1 < m < k)\),使得\(T _{k} =3T _{m} ^{2}\)?若存在,求出\(m\),\(k\)的值;若不存在,请说明理由.