设数列\(\{a _{n} \}\)的前\(n\)项和是\(S _{n}\),且\(2S _{n} -na _{n} =n\).
\((1)\)求证:数列\(\{a _{n} \}\)为等差数列;
\((2)\)若\(a _{n} > 0\)且数列\(\{ \sqrt {S_{n}} \}\)也为等差数列,试求\( \overset{\lim }{n\rightarrow \infty } \dfrac {S_{n+10}}{a_{n}^{2}}\)的值;
\((3)\)设\(b _{n} = \dfrac {S_{n+1}}{n}\),且\(a _{n+1} > a _{n}\)恒成立,求证:存在唯一的正整数\(n\),使得不等式\(a _{n+1} \leqslant b _{n} < a _{n+2}\)成立.