职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷

选择知识点

  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)满足\(a_{1}=2\),\(a_{n+1}=\dfrac{a_{n}}{1+2a_{n}}.\)
    \((1)\)求证:数列\(\{\dfrac{1}{a_{n}}\}\)是等差数列;
    \((2)\)求数列\(\{a_{n}\}\)的通项公式.
  • 题型:选择题 题类:期中考试 难易度:较易

    年份:2021

    等差数列\(\{a_{n}\}\)中,已知\(a_{2}+a_{6}=4\),则\(a_{4}=(\quad)\)
    A.\(1\) B.\(2\) C.\(3\) D.\(4\)
  • 题型:选择题 题类:期中考试 难易度:较易

    年份:2021

    若\(1\),\(m\),\(9\)三个数成等差数列,则圆锥曲线\(x^{2}-my^{2}=1\)的离心率为\((\quad)\)
    A.\(\dfrac{4\sqrt{5}}{5}\) B.\(\dfrac{6\sqrt{5}}{5}\) C.\(\dfrac{2\sqrt{5}}{5}\) D.\(\dfrac{\sqrt{30}}{5}\)
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    已知正项数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(a_{1}=1\),\(S_{n+1}+S_{n}=a_{n+1}^{2}\),数列\(\{b_{n}\}\)满足\(b_{1}=2\),\(b_{n}·b_{n+1}=2^{2a_{n}+1}.\)
    \((1)\)求证:\(\{a_{n}\}\)为等差数列;
    \((2)\)求证:\(\dfrac{a_{1}}{b_{1}}+\dfrac{a_{2}}{b_{2}}+\)…\(+\dfrac{a_{n}}{b_{n}}< 2.\)
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    已知正项数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(4S_{n}=a_{n}^{2}+2a_{n}.\)
    \((1)\)证明:数列\(\{a_{n}\}\)为等差数列,并求\(\{a_{n}\}\)的通项公式;
    \((2)\)设\(b_{n}=\dfrac{1}{(a_{n}+1)(a_{n+1}+1)}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:选择题 题类:期中考试 难易度:较易

    年份:2021

    “数列\(\{a_{n}\}\),\(\{b_{n}\}\)都是等差数列”是“数列\(\{a_{n}+b_{n}\}\)是等差数列”的\((\quad)\)
    A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
  • 题型:选择题 题类:期中考试 难易度:较易

    年份:2021

    设\({{S}_{n}}\)是等差数列\(\left\{{{a}_{n}}\right\}\)的前\(n\)项和,若\(\dfrac{{{a}_{7}}}{{{a}_{4}}}=\dfrac{14}{13}\),则\(\dfrac{{{S}_{13}}}{{{S}_{7}}}=(\quad)\)

    A.\(2\) B.\(\dfrac{1}{2}\) C.\(\dfrac{14}{13}\) D.\(\dfrac{13}{14}\)
  • 题型:填空题 题类:期中考试 难易度:较易

    年份:2021

    已知等差数列\(\{a_{n}\}\)的首项为\(a_{1}=-1\),前\(10\)项形成一组数据的中位数为\(8\),则\(a_{4}=\)______.
  • 题型:选择题 题类:期中考试 难易度:较易

    年份:2021

    设\(\triangle ABC\)的三内角\(A\)、\(B\)、\(C\)成等差数列,\(\sin A=\dfrac{\sqrt{3}}{2}\),则这个三角形的形状是\((\quad)\)
    A.直角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    已知各项均为正数的数列\(\{a_{n}\}\),\(\{b_{n}\}\)满足\(a_{1}=2\),\(b_{1}=4\),且\(a_{n}\),\(b_{n}\),\(a_{n+1}\)成等差数列,\(b_{n}\),\(a_{n+1}\),\(b_{n+1}\)成等比数列.
    \((1)\)求证:数列\(\{\sqrt{b_{n}}\}\)为等差数列;
    \((2)\)记\(c_{n}=\dfrac{1}{a_{n}}+\dfrac{1}{a_{n+1}}\),记\(\{c_{n}\}\)的前\(n\)项和为\(S_{n}\),若\(S_{k}>\dfrac{5}{4}\),求正整数\(k\)的最小值.