已知各项均为正数的数列\(\{a_{n}\}\),\(\{b_{n}\}\)满足\(a_{1}=2\),\(b_{1}=4\),且\(a_{n}\),\(b_{n}\),\(a_{n+1}\)成等差数列,\(b_{n}\),\(a_{n+1}\),\(b_{n+1}\)成等比数列.
\((1)\)求证:数列\(\{\sqrt{b_{n}}\}\)为等差数列;
\((2)\)记\(c_{n}=\dfrac{1}{a_{n}}+\dfrac{1}{a_{n+1}}\),记\(\{c_{n}\}\)的前\(n\)项和为\(S_{n}\),若\(S_{k}>\dfrac{5}{4}\),求正整数\(k\)的最小值.