已知\(S _{n} =\{A|A=(a _{1} , a _{2} , a _{3} , …a _{n} )\}\),\(a _{i} =\{0\)或\(1\}\),\(i=1\),\(2\),\(...\),\(n(n\geqslant 2)\),对于\(U\),\(V∈S _{n}\),\(d(U , V)\)表示\(U\)和\(V\)中相对应的元素不同的个数.
\((\)Ⅰ\()\)令\(U=(0 , 0 , 0 , 0 , 0)\),存在\(m\)个\(V∈S _{5}\),使得\(d(U , V)=2\),写出\(m\)的值;
\((\)Ⅱ\()\)令\(W=(0,0,...,0)(n个0)\),\(U\),\(V∈S _{n}\),求证:\(d(U , W)+d(V , W)\geqslant d(U , V)\);
\((\)Ⅲ\()\)令\(U=(a _{1} , a _{2} , a _{3} , … , a _{n} )\),若\(V∈S _{n}\),求所有\(d(U , V)\)之和.