
已知椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的离心率\(e= \dfrac { \sqrt {6}}{3}\),短轴长为\(2\),\(M\)、\(M{'}\)是椭圆\(C\)上、下两个顶点,\(N\)在椭圆\(C\)上且非顶点,直线\(M{'}N\)交\(x\)轴于点\(P\),\(A _{1}\),\(A _{2}\)是椭圆\(C\)的左,右顶点,直线\(A _{1} M\),\(A _{2} N\)交于点\(Q\).
\((1)\)求椭圆\(C\)的方程;
\((2)\)证明:直线\(PQ\)与\(y\)轴平行.