已知双曲线\(\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1(a>0,b>0)\)的左、右焦点分别为\(F_{1}\)、\(F_{2}\),以\(OF_{1}\)为直径的圆与双曲线的一条渐近线交于点\(M\),若线段\(MF_{1}\)交双曲线于点\(P\),且\(|PF_{2}|=5|PF_{1}|\),则双曲线的离心率为\((\quad)\)
A. \(\sqrt{2}\)
B. \(\sqrt{3}\) C. \(\dfrac{\sqrt{26}}{4}\) D. \(\dfrac{\sqrt{34}}{4}\)