已知数列\(\{a _{n} \}\)满足对任意的\(n∈N ^{*}\),都有\(a _{n} > 0\),且\(a _{1} ^{3} +a _{2} ^{3} +…+a _{n} ^{3} =(a _{1} +a _{2} +…+a _{n} ) ^{2}\).
\((1)\)求\(a _{1}\),\(a _{2}\)的值;
\((2)\)求数列\(\{a _{n} \}\)的通项公式\(a _{n}\);
\((3)\)设数列\(\{ \dfrac {1}{a_{n}a_{n+2}}\}\)的前\(n\)项和为\(S _{n}\),不等式\(S_{n} > \dfrac {1}{3}\log _{a}(1-a)\)对任意的正整数\(n\)恒成立,求实数\(a\)的取值范围.