已知数列\(\{a _{n} \}\)为公比不为\(1\)的等比数列,且\(a _{1} =1\),\(a _{2}\),\(2a _{3}\),\(3a _{4}\)成等差数列.
\((\)Ⅰ\()\)求数列\(\{a _{n} \}\)的通项公式和前\(n\)项和\(S _{n}\);
\((\)Ⅱ\()\)设数列\(\{b _{n} \}\)满足\(b _{1} =a _{1}\),对任意的\(n∈N*\),\( \dfrac {b_{n+1}}{a_{n+1}} - \dfrac {b_{n}}{a_{n}} =5\).
\((ⅰ)\)求数列\(\{b _{n} \}\)的最大项;
\((ⅱ)\)是否存在等差数列\(\{c _{n} \}\),使得对任意\(n∈N*\),都有\(2S _{n} \leqslant c _{n} \leqslant 5-b _{n}\)?若存在,求出所有符合题意的等差数列\(\{c _{n} \}\);若不存在,请说明理由.