已知正项数列\(\{a_{n}\}\)满足\(a_{1}=1\),\(a_{2}=2\),且对任意的正整数\(n\),\(1+a_{n+1}^{2}\)是\(a_{n}^{2}\)和\(a_{n+2}^{2}\)的等差中项.
\((1)\)证明:\(\{a_{n+1}^{2}-a_{n}^{2}\}\)是等差数列,并求\(\{a_{n}\}\)的通项公式;
\((2)\)若\(b_{n}-b_{n-1}=a_{n}\),且\(b_{1}=a_{1}\),求数列\(\{b_{n}\}\)的通项公式.