已知椭圆\(C: \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\),四点\(P _{1} (2 , \sqrt {3} )\),\(P_{2}(0, \sqrt {2})\),\(P _{3} (-2 , \dfrac { \sqrt {6}}{3} )\),\(P _{4} (2 , \dfrac { \sqrt {6}}{3} )\)中恰有三个点在椭圆\(C\)上,左、右焦点分别为\(F _{1}\)、\(F _{2}\).
\((1)\)求椭圆\(C\)的方程;
\((2)\)过左焦点\(F _{1}\)且不与坐标轴平行的直线\(l\)交椭圆于\(P\)、\(Q\)两点,若线段\(PQ\)的垂直平分线交\(y\)轴于点\(D\),求\( \dfrac {|PQ|}{|OD|}\)的最小值.