已知数列\(\{a_{n}\}\),\(\{b_{n}\}\)的各项均为正数.在等差数列\(\{a_{n}\}\)中,\(a_{6}+a_{9}=a_{13}+3\),\(a_{2}^{2}=a_{5}\);在数列\(\{b_{n}\}\)中,\(b_{1}=1\),\(3b_{n+1}^{2}+2b_{n}b_{n+1}-b_{n}^{2}=0.\)
\((Ⅰ)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式;
\((Ⅱ)\)求数列\(\{a_{n}b_{n}\}\)的前\(n\)项和为\(T_{n}.\)